Characteristic Group, Group of Order 60

Xuanang Shawn Chen

February 2021

Definition 1. A subgroup H of a group G is called a characteristic subgroup if for every automorphism ϕ of G, one has $\phi(H) = H$; then write H char G.

Then we have:

Proposition 1.

- 1. If H is characteristic in G, then H is a normal subgroup of G.
- 2. If H is the unique subgroup of G of a given order, then H is characteristic in G.
- 3. If K is characteristic in H and H is normal in G, then K is a normal subgroup in G

Proof. 1 and 2 are trivial.

For 3, consider ϕ_g defined by $\phi_g(x) = g^{-1}xg$. Then $\phi_g(H) = H$. Then restriction $\phi_{g|H}$ is an automorphism of H.

Then we have $\phi_{g|H}(K) = K$ as K is characteristic in H. Since this works for all $g \in G$, we know K in normal in G.

We now see a corollary of this.

Lemma 1. A group G of order 30 has a normal subgroup of order 5.

Proof. Suppose not. Then by Sylow, it must have 6 subgroup of order 5. Then $n_3 = 1$. Let P be this Sylow 3-subgroup. Then G/H has order 10, so G/H has a unique normal subgroup of order 5 by Cauchy. By normal subgroup correspondence, G has a normal subgroup of order 15. A group of order 15 must be cyclic, and contain a characteristic subgroup of order 5. Then the result follows.

Actually, we notice that:

Lemma 2. If G/N has a normal Sylow p-subgroup, and any group of order p|N| is such that it must has a normal Sylow p-subgroup, then G has a normal p-subgroup.

Proof. By normal subgroup correspondence, G has a normal group K with order p|N|. As any group of order p|N| has a normal Sylow p-subgroup, by Proposition 1.3, we are done.

Corollary 1. Let G be a group of order 60 with more than one Sylow 5-subgorup. Then G is simple.

Proof. By Sylow, if $n_5 \neq 1$, then $n_5 = 6$. If N is normal in G,

- (i) 5 divides |N|. Then N has a Sylow 5-subgroup. Furthermore, since all Sylow 5-subgroups are conjugate, N must have all 6 Sylow 5-subgroups. As |N| divides 60, we must have |N| = 30. By Lemma 1, we are done.
- (ii) 5 does not divides |N|. Then |N| = 2, 4, 6 or 12.

If |N|=6 (or 12), it has a unique normal Sylow 3(or 4)-subgroup, and hence it's characteristic in N. By Proposition 1.1.3, this characteristic subgroup is also normal in G. So we just need to consider 2,3 or 4. For |N|=2, |G/N|=30, so G/N has a normal subgroup of order 5. By normal subgroup correspondence, there's a normal subgroup of order 10 in G. So by case (i) we are done. The case for |N|=3 or 4 are the same.

Thus, either case (G is simple.	
---------------------	--------------	--

Honestly, we can further prove that G is isomorphic to A_5 .

Theorem 1. Let G be a group of order 60 with more than one Sylow 5-subgroup. Then $G \equiv A_5$.

Proof. By Corollary 1, we know than G must be simple. By considering the conjugation action of G acting on the set of 6 Sylow 5-subgroups, we know that $G \leq A_6$ of index 6.

Then, by considering the left-multiplication action of A_6 on A_6/G , this induces a homomorphism from A_6 to $Sym(A_6/G)$. Obviously we can further restrict it to a homomorphism from A_6 to A_6 . As G is fixed, we must have that this homomorphism take G to a subgroup of A_5 . Since order G equals order of A_5 , we have G is actually A_5 .